
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Application of Boolean Algebra in AES-128 CBC
Encryption Algorithm

Fityatul Haq Rosyidi - 135231161
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

1FityatulHaqRosyidi25@gmail.com, 13523116@std.stei.itb.ac.id

Abstract—This paper examines the application of Boolean
algebra in the AES encryption algorithm, focusing on the use of the
XOR operation. The XOR operation is essential for securing the
encryption process, particularly in CBC mode where previous
ciphertext or the initialization vector (IV) is XORed with the
current plaintext, enhancing the algorithm's resistance to
cryptographic attacks. Additionally, the paper presents a Python
implementation of the AES-ECB algorithm, showcasing basic
encryption and decryption of text. The study highlights how
Boolean operations, particularly XOR, contribute to the robustness
of the AES algorithm.

Keywords—AES, Boolean algebra, XOR , CBC mode

I. INTRODUCTION

Data security is one of the most crucial aspects in the digital
era, especially with the increasing threats to sensitive
information stored and transmitted over networks. The
Advanced Encryption Standard (AES) is a symmetric
encryption algorithm that has become the international standard
for protecting data with a high level of security. AES is designed
to provide robust security by utilizing computational processes
that involve manipulating bits and bytes of data. One approach
that supports this process is the application of Boolean algebra,
which allows data transformation to be more efficient and secure
through basic logical operations such as AND, OR, and XOR.

At each stage of the algorithm, Boolean algebra concepts are
used to manipulate data bits with high precision, creating data
combinations that are difficult to predict by unauthorized
parties. One approach to enhance security in AES is to use the
Cipher Block Chaining (CBC) mode of operation. In this mode,
each plaintext block is first operated with the result of the
previous block's encryption using XOR before it is encrypted.
This operation creates a chained encryption between blocks,
ensuring that if there is any pattern in the plaintext, it cannot be
detected.

II. THEORETICAL FRAMEWORK

A. Boolean Algebra
Boolean algebra is a branch of mathematics that focuses on

logical operations and the relationships between binary
variables. These variables only have two values, namely 0 and
1, which generally represent the conditions of false and true in
digital logic.

The basic concept of Boolean algebra was first proposed by
English mathematician George Boole in 1854. However, the
practical applications of Boolean algebra were not fully
recognized for a long time after its introduction, both in
mathematics and engineering. Later, in 1938, Claude Shannon,
a communication expert, utilized and refined Boole's concept.
[1]

The fundamental operations in Boolean algebra include NOT,
AND, and OR. The NOT operation is a negation that inverts the
logical value: if the input is 1, the output is 0, and vice versa.
The AND operation (conjunction) results in True only if all
inputs are True, whereas if any input is False, the result is False.
Conversely, the OR operation (disjunction) produces True if one
or more inputs are True, and only results in False if all inputs are
False.

In addition to these basic operations, there are derived
operations such as NAND, NOR, XOR, and XNOR. NAND
(NOT AND) is an AND operation followed by a NOT operation,
so the result is True except when all inputs are True. NOR (NOT
OR) is an OR operation followed by a NOT operation,
producing True only if all inputs are False. XOR (Exclusive OR)
results in True if exactly one of the inputs is True, but not both.
Conversely, XNOR (Exclusive NOR) is the negation of XOR,
producing True if both inputs have the same value.

These operations are governed by various laws in Boolean
algebra, such as the identity law, complement law, idempotent
law, commutative law, associative law, and distributive law.
Today, Boolean algebra plays a crucial role not only in logic but
also in various other fields such as probability theory,
information theory, set theory, cryptography, electronics, and
more.

B. Cryptography
Cryptography refers to the process of encoding or disguising

data to ensure that only the intended recipient, possessing the
correct key, can access and understand the information. The
term originates from the Greek words “kryptós,” meaning
hidden, and “graphein,” meaning to write. Thus, cryptography
literally means "hidden writing," but in practice, it is the secure
transmission of information. [2]

The origins of cryptography date back to ancient Egyptian
hieroglyphics, showcasing early methods of concealing
information. Over time, the practice has evolved significantly,
integrating advanced computing, mathematics, and engineering

mailto:1FityatulHaqRosyidi25@gmail.com
mailto:13523116@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

to develop highly sophisticated algorithms and ciphers for
safeguarding digital information in the modern world.

Today, cryptography underpins various encryption protocols
that protect data, such as 128-bit and 256-bit encryption, Secure
Sockets Layer (SSL), and Transport Layer Security (TLS).
These technologies secure a wide range of digital activities,
including protecting passwords, emails, online transactions, and
sensitive financial operations.

Cryptographic methods come in different forms, tailored to
specific needs. The simplest is symmetric key cryptography,
where data is encrypted with a secret key, which is then sent to
the recipient alongside the encoded message for decryption.
However, this method is vulnerable because an intercepted key
allows a third party to decrypt the message.

To address this limitation, asymmetric cryptography—or the
"public key" system—was developed. In this approach, each
user has a pair of keys: a public key and a private key. A sender
encrypts a message using the recipient’s public key, which can
only be decrypted by the recipient’s private key. This ensures
that even if a message is intercepted, it cannot be decoded
without access to the private key.

Cryptography plays a crucial role in cybersecurity, providing
an extra layer of protection for data and users. It ensures privacy,
maintains confidentiality, and helps safeguard information from
cybercriminals. In practical terms, cryptography serves several
purposes:

• Confidentiality: It guarantees that only the intended
recipient can access and interpret the information,
preserving the privacy of communications and data.

• Data Integrity: Cryptography ensures that data
remains unaltered during transmission. Any attempt to
modify the information would leave detectable
evidence, as seen with digital signatures.

• Authentication: It verifies the identities of parties
involved and the source or destination of the data.

• Non-repudiation: By using cryptographic methods
like digital signatures or email tracking, senders are
held accountable for their communications and cannot
deny having sent a message.

Cryptography encompasses a wide range of processes, making
its definitions understandably broad. This diversity arises from
the various cryptographic algorithms available, each offering
different levels of security depending on the nature of the
information being transmitted. Below are the three primary
types of cryptographic methods:

1. Symmetric Key Cryptography: This method is
named for its use of a single shared key between the
sender and receiver for both encryption and decryption.
Examples include the Data Encryption Standard (DES)
and Advanced Encryption Standard (AES). The main
challenge with symmetric cryptography lies in securely
sharing the key between the communicating parties.

2. Asymmetric Key Cryptography: This more secure
approach involves two keys for each user: a public key
and a private key. The sender uses the recipient’s
public key to encrypt the message, and the recipient
uses their private key to decrypt it. Because the private
key is kept secret, only the intended recipient can
access the information. The RSA algorithm is the most
widely used example of asymmetric cryptography.

3. Hash Functions: Unlike symmetric and asymmetric
cryptography, hash functions do not use keys. Instead,
they generate a unique hash value of fixed length based
on the input data. This value acts as a unique identifier
and is used for data encryption. Hash functions are
commonly employed in operating systems for tasks
like securing passwords.

The key distinction between symmetric and asymmetric
encryption is that symmetric encryption uses a single shared
key, while asymmetric encryption relies on a pair of keys—one
public and one private—for added security.

C. Symmetric Encryption
Symmetric encryption is a method of encrypting data where

the same key is used for both encoding and decoding the
information. Until the introduction of the first asymmetric
ciphers in the 1970s, symmetric encryption was the only
available cryptographic technique.

In general, any cipher that relies on a single secret key for both
encryption and decryption is classified as symmetric.

For instance, if the algorithm substitutes letters with numbers,
both the sender and the recipient must share the same mapping
table. The sender uses this table to encrypt the message, while
the recipient uses it to decrypt it.

However, such basic ciphers are relatively easy to break. For
example, if the frequency distribution of letters in a language is
known, the most frequent letters can be matched with the most
common numbers or symbols in the ciphertext, gradually
revealing meaningful words. With the advent of computers,
breaking such ciphers became trivial, rendering these methods
obsolete.

Modern symmetric algorithms are considered secure only if
they satisfy certain criteria:

• The encrypted data should not exhibit the same
statistical patterns as the original data (for example, the
most frequent symbols in the plaintext and the
ciphertext should not be identical).

• The cipher must be nonlinear, meaning no detectable
patterns or regularities exist in the encrypted data that
would allow someone with access to both plaintext and
ciphertext to trace the transformation.

To meet these requirements, most modern symmetric ciphers
combine substitution (replacing portions of the plaintext, like
letters, with other data, such as numbers, based on a specific rule
or mapping table) and permutation (shuffling parts of the
plaintext according to a rule). These operations are alternated
and repeated in cycles, with each complete cycle referred to as
a round.

Symmetric encryption algorithms can be classified into two
categories based on their operational method:

• Block ciphers
• Stream ciphers

Block ciphers encrypt data in fixed-size blocks (e.g., 64, 128
bits, or other sizes depending on the algorithm). If the data or its
final portion is smaller than the block size, the algorithm adds
extra symbols, known as padding, to complete the block.

Examples of modern block ciphers include:
• AES
• GOST 28147-89
• RC5

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

• Blowfish
• Twofish

Stream ciphers use an additive cipher, where each bit of data
is modified using the corresponding bit from a pseudorandom
keystream (a sequence of numbers generated from a key) that
matches the length of the message. Typically, the bits of the
source data are compared with the keystream bits using the XOR
logical operation (which returns 0 if the bits are the same and 1
if they differ).

Stream ciphers are used in algorithms like:
• RC4
• Salsa20
• HC-256
• WAKE

Symmetric algorithms are generally faster and require fewer
resources than asymmetric algorithms. Most symmetric ciphers
are believed to be resistant to attacks by quantum computers,
which could theoretically threaten asymmetric encryption.

The primary weakness of symmetric encryption lies in the key
exchange. Since both the sender and the recipient need the same
key for encryption and decryption, this key must be transmitted
securely. If sent over an unprotected channel, it could be
intercepted. To mitigate this, many systems use asymmetric
algorithms to encrypt and securely exchange the key.

Many modern services use symmetric encryption to protect
data, often alongside asymmetric encryption. For example,
instant messaging apps use these ciphers to secure messages,
with the symmetric key typically being sent through asymmetric
encryption. Similarly, video streaming services use symmetric
encryption to secure audio and video streams. In the Transport
Layer Security (TLS) protocol, symmetric encryption ensures
the confidentiality of transmitted data.

However, symmetric encryption is not suitable for creating
digital signatures and certificates because the secret key must be
shared, which undermines the purpose of an electronic signature
— the ability to verify authenticity without needing access to the
owner's key.

III. ADVANCED ENCRYPTION STANDARD (AES)

A. Definition
Encryption plays a crucial role in today’s digital landscape,

promoting security and privacy. When the AES (Advanced
Encryption Standard) algorithm replaced the Data Encryption
Standard (DES) in 2001 as the global encryption standard, it
addressed many of the limitations of its predecessor. AES was
seen as the future of encryption for everyday applications, and
it has successfully met the expectations set for it. Additionally,
AES continues to evolve and improve.

When the DES algorithm was developed and standardized, it
was suitable for the technology of that era. However, as
computational power increased, breaking the DES encryption
became faster and easier over time. To meet the growing need
for stronger security, a more robust encryption algorithm was
required, one with longer key sizes and stronger ciphers. While
triple DES was introduced to address these issues, it did not
become widely adopted due to its slower performance. This led
to the creation of AES to overcome these challenges.

AES (also known as the Rijndael algorithm) is a symmetric
block cipher with a 128-bit block size. It encrypts these blocks
using keys of 128, 192, or 256 bits. After encrypting the

individual blocks, AES combines them to form the final
ciphertext.

AES uses a substitution-permutation network (SP network)
model, which involves a series of operations like substitutions
(replacing inputs with specific outputs) and permutations
(rearranging bits).

Some key features of AES include:

1. SP Network: AES operates on an SP network
structure, unlike the DES algorithm, which uses a
Feistel cipher structure.

2. Key Expansion: AES begins with a single key and
then expands it into multiple keys used in each
encryption round.

3. Byte Data: AES processes data in byte-sized chunks
rather than bit-sized chunks, treating the 128-bit block
as 16 bytes during encryption.

4. Key Length: The number of rounds in AES encryption
depends on the key size. A 128-bit key undergoes 10
rounds, a 192-bit key undergoes 12 rounds, and a 256-
bit key undergoes 14 rounds.

B. Algorithm
To understand how AES operates, it is important to grasp how

information is transferred through its various stages. Each block
of data, comprising 16 bytes, is represented as a 4x4 matrix,
where every cell contains a single byte of data. [3]

Figure 1. State Array

Source : Writer’s Archive

This matrix is called the state array. Similarly, the initial key
is expanded into (n+1) keys, where n represents the number of
encryption rounds. For example, with a 128-bit key, there are 10
rounds, resulting in the generation of 11 keys in total.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 2. AES Algorithm Steps

Source : Writer’s Archive

The outlined steps are performed sequentially on each block.
Once all the individual blocks are successfully encrypted, they
are combined to create the final ciphertext. The process includes
the following steps:

• Add Round Key: The data stored in the state array is
XORed with the initial key (K0). The resulting state
array serves as input for the next step.

Figure 3. Add Round Key
Source : Writer’s Archive

• Sub-Bytes: Each byte in the state array is converted to

hexadecimal and split into two equal parts. These parts
represent rows and columns, which are then used to
look up corresponding values in the substitution box
(S-Box), producing a new state array.

Figure 4. Sub-Bytes

Source : Writer’s Archive

• Shift Rows: Row elements in the matrix are
rearranged. The first row remains unchanged, the
second row is shifted one position to the left, the third
row is shifted two positions to the left, and the fourth
row is shifted three positions to the left.

Figure 5. Shift Rows

Source : Writer’s Archive

• Mix Columns: Each column of the state array is

multiplied by a constant matrix to produce a new
column. After all columns are transformed, the updated
state array proceeds to the next step. However, this
step is omitted during the final encryption round.

Figure 6. Mix Columns

Source : Writer’s Archive

C. AES Modes
Encryption algorithms can be categorized based on the input

type into two main types: block ciphers and stream ciphers. A
block cipher is an encryption algorithm that processes a fixed-
size input (e.g., b bits) and produces an output ciphertext of the
same size (b bits). If the input exceeds b bits, it is divided into
smaller blocks for processing.

Block Cipher Modes of Operation define the methods used to
securely encrypt and decrypt large data sets with a block cipher.
Block ciphers operate on fixed-size data blocks (e.g., 128 bits)
rather than processing data bit by bit. To handle data larger than
a single block while maintaining security and efficiency, various
modes of operation are applied. Below are some common modes
of operation:

Electronic Code Book (ECB)

The Electronic Code Book is the simplest mode of operation
for a block cipher. It works by directly encrypting each block of
plaintext, producing corresponding blocks of encrypted
ciphertext. When a message is larger than b bits, it is divided
into smaller blocks, and the encryption process is repeated for
each block.

Figure 7. ECB

Source : Block Cipher modes of Operation - GeeksforGeeks

https://www.geeksforgeeks.org/block-cipher-modes-of-operation/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The Electronic Code Book (ECB) mode offers advantages

such as enabling parallel encryption of data blocks, making it a
faster encryption method, and its simplicity in implementation.
However, it also has significant drawbacks, including
vulnerability to cryptanalysis due to the direct correlation
between plaintext and ciphertext. Additionally, identical
plaintext blocks result in identical ciphertext blocks, potentially
exposing patterns and compromising data security.

Cipher Block Chaining (CBC)

The Cipher Block Chaining (CBC) improves upon the security
limitations of the Electronic Code Book (ECB) mode. In CBC,
each plaintext block is XORed with the ciphertext of the
previous block before being encrypted, creating a dependency
between consecutive blocks. In essence, the cipher block is
generated by encrypting the result of the XOR operation
between the current plaintext block and the previous ciphertext
block.

Figure 8. CBC

Source : Block Cipher modes of Operation - GeeksforGeeks

The Cipher Block Chaining (CBC) mode offers several

advantages, including effective handling of input data larger
than b bits, serving as a reliable authentication mechanism, and
providing stronger resistance to cryptanalysis compared to ECB
by obscuring patterns in the data. However, CBC has a
drawback: it relies on the previous ciphertext block for both
encryption and decryption, which complicates parallel
processing.

Cipher Feedback Mode (CFB)

In this mode, the cipher output is fed back into the encryption
process for the subsequent block, incorporating specific
features. Initially, an initialization vector (IV) is used for the first
encryption. The output bits are then divided into two parts: s bits
on the left and b-s bits on the right. The s bits are combined with
the plaintext through an XOR operation, and the result is input
into a shift register. This register shifts b-s bits to the left-hand
side (lhs) and s bits to the right-hand side (rhs), continuing the
process. The encryption and decryption procedures follow a
similar approach, utilizing encryption algorithms in both cases.

Figure 9. CFB

Source : Block Cipher modes of Operation - GeeksforGeeks

The Cipher Feedback (CFB) mode offers advantages such as

making cryptanalysis challenging due to data loss from the use
of shift registers and its ability to process data streams of any
size. However, it shares similar limitations with CBC mode,
including the inability to support block loss or simultaneous
encryption of multiple blocks. While decryption in CFB is
parallelizable and resilient to loss, the mode is slightly more
complex and prone to error propagation.

Output Feedback Mode (OFB)

The Output Feedback (OFB) mode operates similarly to the
Cipher Feedback mode, with the key difference being that it uses
the encrypted output as feedback rather than the XOR output of
the cipher. In OFB, the entire block of bits is sent, rather than
just selecting s bits. This mode provides strong resistance to bit
transmission errors and reduces the dependency or relationship
between the ciphertext and the plaintext.

Figure 10. OFB

Source : Block Cipher modes of Operation - GeeksforGeeks

The Output Feedback (OFB) mode has the advantage of

preventing bit errors from propagating, unlike Cipher Feedback
(CFB), where a single bit error in a block can affect all
subsequent blocks. This makes OFB more resilient to
transmission errors. However, OFB has its drawbacks, including
being more vulnerable to message stream modification attacks
compared to CFB due to its operational method. Additionally, if

https://www.geeksforgeeks.org/block-cipher-modes-of-operation/
https://www.geeksforgeeks.org/block-cipher-modes-of-operation/
https://www.geeksforgeeks.org/block-cipher-modes-of-operation/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

the keystream is reused, it compromises the security of the
encryption.

Counter Mode (CTR)

 The Counter Mode (CTR) is a straightforward block cipher
implementation that relies on a counter. In this mode, a value
generated by the counter is encrypted and then XORed with the
plaintext to produce the ciphertext block. Since the CTR mode
does not require feedback, it can be implemented in parallel,
offering increased efficiency.

Figure 11. CTR

Source : Block Cipher modes of Operation - GeeksforGeeks

The Counter (CTR) mode offers the advantage of eliminating

the direct relationship between plaintext and ciphertext, as each
block uses a unique counter value, allowing the same plaintext
to map to different ciphertext. It also enables parallel encryption,
as outputs from previous stages are not chained like in CBC.
However, a significant disadvantage of CTR is that it requires
synchronization of the counter between both the transmitter and
receiver. If synchronization is lost, the recovery of plaintext
becomes inaccurate.

IV. IMPLEMENTATION

Python Languange was chosen for the implementation of this
algorithm due to its effectiveness and ease of program design.
The AES CBC algorithm is implemented from scratch, without
using pre-existing AES classes such as those in the
pyCryptodome library. The purpose of building this program
from scratch is to deepen the understanding of the sequence of
processes in the AES algorithm, including both encryption and
decryption processes. The program repository can be accessed
via the link provided in the appendix.

A. Key Expanding

Figure 12. Key Expanding
Source : Writer’s Archive

The expand_key function is used to perform key expansion,

generating 11 round keys that are each the result of XOR
operations. Each round key is used alternately in each round of
the encryption process.

B. Encryption

Figure 13. Encrypt Stages Functions

Source : Writer’s Archive

There are four main stages in the encryption process:

add_round_key, shift_rows, sub_bytes, and mix_columns. Each
of these stages is used of the encryption process.

https://www.geeksforgeeks.org/block-cipher-modes-of-operation/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 14. Encrypt Main Functions

Source : Writer’s Archive

The single_block_encrypt function is used for encrypting a
single block that contains 16 bytes of data. Each individual
block will be linked with others if the plaintext exceeds 16 bytes,
using the Cipher Block Chaining (CBC) mode, which is
implemented in the cbc_encrypt function.

C. Decryption

Figure 15. Decrypt Stages Function

Source : Writer’s Archive

In the decryption process, only two new functions are
required: inv_shift_rows and inv_mix_columns. As their names
suggest, these functions are used to reverse the shift_rows and
mix_columns processes. Additionally, the sub_bytes and
add_round_key processes do not need to be reversed, as they are
symmetric operations.

Figure 16. Decrypt Main Function

Source : Writer’s Archive

Similar to the encryption process, the single_block_decrypt

function is used for decrypting a single block that contains 16
bytes of data. Likewise, the cbc_decrypt function is used to
decrypt ciphertext longer than 16 bytes using the CBC mode.

D. Constants

Figure 17. Constants

Source : Writer’s Archive

There are two constant matrices in this program: s_box and
inv_s_box. The s_box is a constant used for byte substitution
during the sub_bytes step. The values in the state array are
replaced with the corresponding values from the s_box. On the
other hand, the inv_s_box is a constant used to reverse the byte
substitution during decryption.

V. CONCLUSION

This paper explores the use of Boolean algebra in the AES
encryption algorithm, particularly within the CBC (Cipher
Block Chaining) mode. The key Boolean operation employed in
AES is XOR, which plays a crucial role in the AddRoundKey

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

step, where the key undergoes repeated XOR operations.
Additionally, in the CBC mode, the previous plaintext is XORed
with either the initialization vector (IV) or the prior ciphertext.
This technique strengthens data security by increasing
encryption complexity and mitigating the effectiveness of
cyberattacks.

This paper also includes an implementation of the AES-ECB
algorithm in Python, demonstrating a basic encryption and
decryption program for text.

VI. APPENDIX

Github Repository : FityatulhaqRosyidi/Simple-AES-128bit-
CBC-Implementation: Advanced Encryption Standard (AES)
Implementation, focused on Cipher Block Chaining (CBC)

Mode

VII. ACKNOWLEDGMENT
I would like to express my deepest gratitude to God Almighty,

for His grace and blessings, allowing me to complete this paper.
I also wish to sincerely thank all the individuals who have
provided support and assistance in the preparation of this paper.
Special thanks go to Dr. Ir. Rinaldi Munir, M.T. and Dr. Ir. Rila
Mandala, M.Eng., Ph.D., the lecturer for the IF1220 Discrete
Mathematics course. I also extend my gratitude and
encouragement to my fellow students in the Department of
Informatics Engineering, whose support has kept me motivated
and made me feel supported throughout this process.

Lastly, I hope this paper can provide valuable insights to its
readers and contribute to the advancement of knowledge,
particularly in the fields of Cryptography and Discrete
Mathematics.

REFERENCES
[1] G. Boole, Sejarah Aljabar Boolean, Academia.edu. [Online]. Available:

https://www.academia.edu/25398298/Sejarah_aljabar_boolean.
[Accessed: Jan. 8, 2025].

[2] "Apa itu Kriptografi," Dewaweb. [Online]. Available:
https://www.dewaweb.com/blog/apa-itu-
kriptografi/#Pengertian_Kriptografi. [Accessed: Jan. 8, 2025].

[3] "AES Challenge," CryptoHack. [Online]. Available:
https://cryptohack.org/challenges/aes/. [Accessed: Jan. 8, 2025].

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Fityatul Haq Rosyidi

13523116

https://github.com/FityatulhaqRosyidi/Simple-AES-128bit-CBC-Implementation
https://github.com/FityatulhaqRosyidi/Simple-AES-128bit-CBC-Implementation
https://github.com/FityatulhaqRosyidi/Simple-AES-128bit-CBC-Implementation
https://github.com/FityatulhaqRosyidi/Simple-AES-128bit-CBC-Implementation
https://www.academia.edu/25398298/Sejarah_aljabar_boolean
https://www.dewaweb.com/blog/apa-itu-kriptografi/#Pengertian_Kriptografi
https://www.dewaweb.com/blog/apa-itu-kriptografi/#Pengertian_Kriptografi
https://cryptohack.org/challenges/aes/

	I. Introduction
	II. Theoretical Framework
	A. Boolean Algebra
	B. Cryptography
	C. Symmetric Encryption

	III. Advanced Encryption Standard (AES)
	A. Definition
	B. Algorithm
	C. AES Modes

	IV. Implementation
	A. Key Expanding
	B. Encryption
	C. Decryption
	D. Constants

	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References
	PeRNYATAAN

